Self-assembly of N2-modified guanosine derivatives: formation of discrete G-octamers.
نویسندگان
چکیده
In the presence of Na(+) ions, two N(2)-modified guanosine derivatives, N(2)-(4-n-butylphenyl)-2',3',5'-O-triacetylguanosine (G1) and N(2)-(4-pyrenylphenyl)-2',3',5'-O-triacetylguanosine (G2), are found to self-associate into discrete octamers that contain two G-quartets and a central ion. In each octamer, all eight guanosine molecules are in a syn conformation and the two G-quartets are stacked in a tail-to-tail fashion. On the basis of NMR spectroscopic evidence, we hypothesize that the pi-pi-stacking interaction between the N(2)-side arms (phenyl in G1 and pyrenyl in G2) can considerably stabilize the octamer structure. For G1, we have used NMR spectroscopic saturation-transfer experiments to monitor the kinetic ligand exchange process between monomers and octamers in CD(3)CN. The results show that the activation energy (E(a)) of the ligand exchange process is 31 +/-5 kJ mol(-1). An Eyring analysis of the saturation transfer data yields the enthalpy and entropy of activation for the transition state: DeltaH(not =)=29 +/-5 kJ mol(-1) and DeltaS(not =)=-151 +/-10 J mol(-1) K(-1). These results are consistent with an associative mechanism for ligand exchange.
منابع مشابه
Synthetic Ion Channels from Lipophilic Guanosine Derivatives
Title of Dissertation: SYNTHETIC ION CHANNELS FROM LIPOPHILIC GUANOSINE DERIVATIVES Ling Ma, Doctor of Philosophy, 2009 Dissertation directed by: Professor Jeffery T. Davis Department of Chemistry and Biochemistry Synthetic ion channels and pores not only represent models of natural transmembrane ion channels, but also demonstrate their potential applications in the areas of drug delivery, bios...
متن کاملProbing hydrogen bonding and ion-carbonyl interactions by solid-state 17O NMR spectroscopy: G-ribbon and G-quartet.
We report solid-state 17O NMR determination of the 17O NMR tensors for the keto carbonyl oxygen (O6) of guanine in two 17O-enriched guanosine derivatives: [6-17O]guanosine (G1) and 2',3',5'-O-triacetyl-[6-17O]guanosine (G2). In G1.2H2O, guanosine molecules form hydrogen-bonded G-ribbons where the guanine bases are linked by O6...H-N2 and N7...H-N7 hydrogen bonds in a zigzag fashion. In addition...
متن کاملGuanosine-based hydrogen-bonded 2D scaffolds: metal-free formation of G-quartet and G-ribbon architectures at the solid/liquid interface.
We report on the synthesis and self-assembly of three novel lipophilic guanosine derivatives exposing a ferrocene moiety in the C(5') position of the sugar unit. Their self-association in solution, and at the solid/liquid interface, can be tuned by varying the size and nature of the C(8)-substituent, leading to the generation of either G-ribbons, lamellar G-dimer based arrays or the G4 cation-f...
متن کاملDiamondoids and DNA Nanotechnologies
Diamondoids are cage-like saturated hydrocarbons consisting of fused cyclohexane rings. The Diamondoids family of compounds is one of the best candidates for molecular building blocks (MBBs) in nanotechnology to construct organic nanostructures compared to other MBBs known so far. The challenge is to find a route for self-assembly of these cage hydrocarbons and their applications in the bottom-...
متن کاملPhysical and electrical characteristics of supramolecular polymer films based on guanosine derivatives modified with tetrathiafulvalene moiety
Supramolecular films consisting of guanosine derivatives modified with a tetrathiafulvalene (TTF) moiety have been prepared. The hydrogen bonding network of the guanosine unit enables the formation of a robust and self-supporting cast film by a solution process. Differential scanning calorimetry and dynamic mechanical analysis (DMA) revealed that the self-supporting films were mechanically flex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemistry
دوره 14 4 شماره
صفحات -
تاریخ انتشار 2008